当前位置: 首页 >> 通知公告 >> 正文 通知公告
龙马统数·见微知著大讲堂第71讲:Robust and Efficient Mediation Analysis via Huber Loss
来源:  点击次数: 次 发布时间:2024-06-24   编辑:威尼斯wns885566

学术报告:Robust and Efficient Mediation Analysis via Huber Loss

报告时间:6月28日(星期五)下午15:00-16:30

报告地点:沙河校区,二教109

报告人:王文武,曲阜师范大学统计与数据科学学院,教授

报告摘要:Mediation analysis is one of the most popularly used methods in social sciences and related areas. To estimate the indirect effect, the least-squares regression is routinely applied, which is also the most efficient when the errors are normally distributed. In practice, however, real data sets are often non-normally distributed, either heavy-tailed or skewed, so that the leastsquares estimators may behave very badly. To overcome this problem, we propose a robust M-estimation for the indirect effect via a general loss function, with a main focus on the Huber loss which is more slowly varying at large values than the squared loss. We further propose a data-driven procedure to select the optimal tuning constant by minimizing the asymptotic variance of the Huber estimator, which is usually more robust and efficient than the least-squares and least-absolute-deviation estimators. Simulation studies show that our new method performs better than the existing competitors in terms of the mean square error, the type I error rate, and the statistical power. Finally, the usefulness of the proposed method is also illustrated using a real data example.

报告人简介:王文武,曲阜师范大学统计与数据科学学院教授、博士生导师;校统计学研究所副所长,院研究生工作负责人。主要从事非参数统计、稳健统计、统计机器学习与因果效应评估等方面研究工作;在机器学习顶级期刊Journal of Machine Learning Research、Knowledge-Based Systems,统计学权威期刊Statistics in Medicine、Test,心理学权威期刊Structural Equation Modeling和环境顶级期刊Journal of Hazardous Materials等发表论文10余篇。目前,主持国家自然科学基金面上项目1项;参与国家自然科学基金面上项目1项。曾以高级研究助理、博士后研究员、访问学者、特邀演讲人等身份访问香港大学和香港浸会大学,累计工作时间超过48个月。

首页

          版权所有:威尼斯wns885566(中国)BinG百科-Made in China  
          地址:北京市昌平区沙河高教园威尼斯wns885566沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号